# Thermochemistry of Heteroatomic Compounds. Calculation of Combustion and Formation Enthalpy of some Phosphorylated Sugars and Aminoacids 

V.V.Ovchinnikov, L.I.Lapteva, N.R.Muzafarov<br>Kazan State of Architectural-building University

Russia 420043, Kazan, Zelionaya str.1, e-mail: chem._vvo@mail.ru

A new approach is suggested for the calculation of combustion enthalpies of three-coordinated phosphorus organic derivatives in the condensed state (scheme A) on the basis of the equation $\Delta H_{\text {comb }}^{\prime}=a+b N$, in which $a$ and $b$ are constants and $N$ is a number of valence, bondforming electrons in the researching molecules [1]
$\mathrm{R}_{3} \mathrm{P}$ (liq or sol) $+n \mathrm{O}_{2} \rightarrow x \mathrm{CO}_{2}$ (gas) $+y \mathrm{H}_{2} \mathrm{O}$ (liq) $+z \mathrm{H}_{3} \mathrm{PO}_{4}$ (sol)
$n, x, y, z$ are stoichiometric coefficients, and R is Alk, Ar.
The formation enthalpies ( $\Delta H_{\mathrm{f}}^{o}$ ) of liquid phosphorus derivatives accordingly to the mentioned above equation and Hess-low [ $\Delta H_{\text {comb }}^{\prime}=\Sigma \Delta H^{o_{\mathrm{f}}}$ (products) $-\Sigma \Delta H^{o_{\mathrm{f}}}$ (reactants)] have been calculated. The gaseous formation enthalpies of $\mathrm{P}(\mathrm{III})$-compounds (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ), receiving on the basis of mannite, ribite, glycine and alanine (see Table), were calculated with the use of their vaporization enthalpies: $\Delta H_{\mathrm{vap}}=4.26+9.37^{1} X^{\mathrm{s}}+0.87 \mu^{2}$. Last equation includes in itself the solvation topological index of the first order and a dipole moment of molecule, obtained by molecular mechanics method [2,3].

Necessary to note, that the calculated combustion enthalpies in condensed phase
it is difficult to suppose as a final values. It is only the intermediate stage on the way to the obtaining of real magnitudes, which are required for the bond energy $\left(E_{\mathrm{b}}\right)$ calculations [ $\Sigma E_{\mathrm{b}} \approx \Sigma$ $\Delta H^{o}{ }_{\mathrm{f}}$ (all atoms) - $\Delta H^{o}{ }_{\mathrm{f}}$ (molecule, gas) $]$. All $\Delta H_{\text {comb }}^{\prime}$ values need in the addition in enthalpy of combustion of correction contributions ( $w_{i}$ ) for such structural fragments of molecules as there are in simple and complex ethers, amines, multiple bonds and cycles of different size with a phosphorus atom in their composition. Ultimately the suggested in the top of abstract equation has a next form:

$$
\Delta H_{\mathrm{comb}}=\Delta H_{\mathrm{comb}}^{\prime}+\Sigma w_{i} .
$$

Table. Structural ( ${ }^{1} X^{\mathrm{s}}$ and $\mu, \mathrm{D}$ ) and calculated thermochemical parameters $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ ethers of phosphoric acid

| Formula | $\begin{aligned} & { }^{1} \chi^{5} \\ & (\mu) \end{aligned}$ | $\begin{aligned} & -\Delta H_{\text {comb }} \\ & ( \pm 0.005 \%) \end{aligned}$ | $\begin{aligned} & -\Delta H_{\text {vap }} \\ & ( \pm 0.05 \%) \end{aligned}$ | $\begin{aligned} & -\Delta H_{\mathrm{f}}^{0} \\ & ( \pm 0.055 \%) \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | liq, sol | gas |
| Mer ${ }_{\text {C- }}$ | $\begin{aligned} & 11.085 \\ & (1.0) \end{aligned}$ | $\begin{aligned} & 7922.7 \\ & \pm 39.6 \end{aligned}$ | $\begin{aligned} & 109.0 \\ & \pm 5.4 \end{aligned}$ | $\begin{aligned} & 1723.8 \\ & \pm 39.6 \end{aligned}$ | $\begin{aligned} & 1614.9 \\ & \pm 44.9 \end{aligned}$ |
| $1$ | $\begin{aligned} & 8.089 \\ & (1.0) \end{aligned}$ | $\begin{aligned} & 3428.7 \\ & +17.1 \end{aligned}$ | $\begin{aligned} & 80.9 \\ & \pm 4.0 \end{aligned}$ | $\begin{aligned} & 2062.1 \\ & \pm 17.1 \end{aligned}$ | $\begin{aligned} & 1981.2 \\ & \pm 21.6 \end{aligned}$ |
| $\mathrm{R}=\mathrm{H}$ | $\begin{aligned} & 4.105 \\ & (4.3) \end{aligned}$ | $\begin{aligned} & 2358.7 \\ & \pm 11.8 \end{aligned}$ | $\begin{aligned} & 41.5 \\ & \pm 2.1 \end{aligned}$ | $\begin{aligned} & 529.6 \\ & \pm 11.8 \end{aligned}$ | $\begin{array}{r} 488.1 \\ \pm 13.9 \end{array}$ |
| O $\quad \mathrm{R}=\mathrm{Me}$ | $\begin{aligned} & 4.526 \\ & (4.3) \end{aligned}$ | $\begin{aligned} & 3000.7 \\ & \pm 15.0 \end{aligned}$ | $\begin{aligned} & 44.7 \\ & \pm 2.2 \end{aligned}$ | $\begin{aligned} & 567.0 \\ & \pm 15.0 \end{aligned}$ | $\begin{array}{r} 522.3 \\ \pm 17.2 \end{array}$ |

## References

[1] Ovchinnikov V.V., Lapteva L.I., Kireev M.G., Russian Chem. Bulletin, 2004, No 8. P. 1693-1694.
[2] Ovchinnikov V.V., Khazieva L.R., Lapteva L.I., Konovalov A.I., Russian Chem. Bulletin, 2000, Vol. 49, No 1. P. 33-38.
[3] Ovchinnikov V.V., Phosphorus, Sulfur, and Silicon. 2004. Vol. 179, N 1. P.115-151.

